

Course Syllabus

Course Code	Course Title	ECTS Credits		
COMP-515DL	Distributed Systems	10		
Prerequisites	Department	Semester		
None	Computer Science	Fall		
Type of Course	Field	Language of Instruction		
Required	Computer Science	English		
Level of Course	Lecturer(s)	Year of Study		
2 nd Cycle	Dr Harald Gjermundrød	1 st or 2 nd		
Mode of Delivery	Work Placement	Corequisites		
Distance Learning	N/A	None		

Course Objectives:

The main objectives of the course are to:

- introduce the principles of design, construction and development of distributed systems along with distributed algorithms
- cover in detail the different interaction paradigms for distributed systems like interprocess communication, remote invocation, and indirect communication
- cover in detail distributed algorithms for time, state consistency, coordination and agreement
- provide deep knowledge and contrast different middleware paradigms like distributed objects, components based, and peer-to-peer systems
- explain in detail naming structure and organization in distributed systems
- expose the students to development tools/environments/frameworks to develop distributed systems.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. describe the principals, design, architecture, organization, algorithms and development of distributed systems
- 2. compare and contrast the following interaction methods: interprocess communication, remote invocation, and indirect communication that are used in distributed systems

- 3. critically assess time, state consistency, coordination and agreement algorithms used in distributed systems.
- 4. critically assess different middleware paradigms like distributed objects, components based, and peer-to-peer systems
- 5. summarize the naming structure and organization in distributed systems
- 6. demonstrate the ability to select an appropriate distributed algorithm that fulfills the design requirements for a distributed system
- 7. demonstrate the ability to select an appropriate middleware paradigm that fulfills the design requirements for a distributed system
- 8. design and develop a distributed system based on a description of its required functionality and purpose.

Course Content:

- 1. Characterization of Distributed Systems
 - a) Examples of distributed systems
 - b) Trends in distributed systems
 - c) Focus on resource sharing
 - d) Challenges like heterogeneity, scalability, failure handling, and security
- 2. System models
 - a) Physical models
 - b) Architectural models
 - c) Fundamental models
- 3. Interprocess Communication
 - a) The API for the Internet protocols
 - b) External data representation and marshaling
 - c) Multicast communication
 - d) Network virtualization: Overlay networks
- 4. Remote Invocation
 - a) Request-reply protocols
 - b) Remote procedure call
 - c) Remote method invocation
 - d) Case study of a RPC/RMI technology
- 5. Indirect communication
 - a) Group communication
 - b) Publish-subscribe systems
 - c) Message queues
 - d) Shared memory approaches
- 6. Distributed objects and components
 - a) Distributed objects
 - b) Case study of a distributed object middleware
 - c) From objects to components
 - d) Case studies of a component based middleware
- 7. Peer-to-peer Systems
 - a) Napster and its legacy
 - b) Peer-to-peer middleware
 - c) Routing overlays

- d) Case study of an overlay network and application
- 8. Name Services
 - a) Name services and the Domain Name System
 - b) Directory services
 - c) X.500 Directory Service.
- 9. Time and Global States
 - a) Clocks, events and process states
 - b) Synchronizing physical clocks
 - c) Logical time and logical clocks
 - d) Global states
- 10. Coordination and Agreement
 - a) Distributed mutual exclusion
 - b) Elections
 - c) Coordination and agreement in group communication
- 11. Designing Distributed systems
 - a) Case study of all the aspects of a large distributed system

Learning Activities and Teaching Methods:

Lectures, Practical Exercises, and Assignments.

Assessment Methods:

Final Exam, Individual Programming Assignments, and Individual Assignments

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Distributed Systems: Concepts and Design, 5 th Edition	G. Coulouris, J. Dollimore, T. Kindberg, G. Blair	Addison Wesley	2011	978- 0132143011

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Distributed Systems, 3 rd Edition	Maarten Van Steen and Andrew S. Tanenbaum	CreateSpace Independent Publishing Platform	2017	978-15- 43057386