

Course Syllabus

Course Code	Course Title	ECTS Credits
COMP-523DL	Game Programming	10
Prerequisites	Department	Semester
None	Computer Science	Fall, Spring
Type of Course	Field	Language of Instruction
Elective	Computer Science	English
Level of Course	Lecturer(s)	Year of Study
2 nd Cycle	Andreas Savva	2 nd
Mode of Delivery	Work Placement	Corequisites
Distance Learning	N/A	None

Course Objectives:

The main objectives of the course are to:

- Introduce students the standards and innovative techniques for game programming.
- Provide the tools and inspiration that game developers need to excel.
- Feature cutting-edge, ready-to-use techniques contributed by industry veterans and experts.
- Introduce a plethora of time-saving, ready-to-use methods for the developer's tool box.
- Provide answers to the needs of passionate developers, eager newcomers, voracious production requirements, and to the demand for innovating and entertaining game-play.
- Provide students with practical ideas and techniques and get them ready to develop games that are more inventive, entertaining, and satisfying.
- Provide students the mathematical background of game development.
- Provide practical experience to computer game development.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Deal with the practicalities of writing a computer game.
- 2. Explain the mathematics involved in computer games.
- 3. Explain the AI algorithms and Physical Laws involved in generating computer games.
- 4. Implement computer games for various platforms.
- 5. Describe how Computer Graphics, AI, Physics and Networks are combined in developing computer games.

Course Content:

- 1. Games: History and Society
 - The First Video Games
 - Games for the Masses, The Console Kings
 - Audience and Demographics, Societal Reaction to Games, Cultural Issues, Society within Games
- 2. Game Design
 - The Game Designer, A Model of Games
 - Game, Player and Experience
 - Play Mechanics, Interface, Game Systems
 - Design Work, Prototyping and Playtesting Cycles, Playtesting
- 3. Game Production and Project Management
 - Programming Teams
 - Methodologies, Common Practices and Quality
 - Leveraging Existing Code
 - Platforms
 - Concept Phase, Preproduction Phase, Production Phase, Postproduction
- 4. Programming Languages and Fundamentals
 - C++ and Game Development, Java, Scripting Languages
 - Data Structures, Object-Oriented Design in Games
 - Component Systems, Design Patterns
- 5. Game Architecture, Memory and Debugging
 - Bird's-Eye View of a Game, Initialization/Shutdown Steps, Main Game Loop, Game Entities
 - Memory Management, File I/O, Game Resources, Serialization
 - The Five-Step Debugging Process, Expert Debugging Tips, Tough Debugging Scenarios and Patterns
 - Understanding the Underlying System, Adding Infrastructure to Assist in Debugging, Prevention of Bugs
- 6. Mathematics and Physics in Games
 - Applied Trigonometry, Vectors and Matrices, Transformations, Geometry
 - Collision Detection, Overlap Testing, Intersection Testing
 - Simplified Geometry, Bounding Volumes
 - Terrain Collision Detection, Collision Resolution, Physics Simulations
 - Beyond Particles, Third-Party Physics Engines
- 7. Graphics and Animation
 - Introduction to 3D Modeling, Box Modeling with Polygons, NURBS, Subdivision Surfaces
 - 3D Sculpting, Reverse Engineering, BSP Modeling, Modeling Methodology
 - Texture Mapping, Mapping UV Coordinates
 - Animation, Motion Capture, Motion Extraction, Mesh Deformation, Inverse Kinematics, Collision Detection
 - Real-Time Animation Playback, Character Animation, Facial Animation, Simulation Animation
- 8. Artificial Intelligence
 - Al for Games, Game Agents

- Finite-State Machines
- Common AI Techniques, Search Space, Pathfinding
- 9. Audio and Network
 - Programming Basic Audio
 - Programming Music Systems
 - Programming Advanced Audio
- 10. Game Industry
 - Game Developers, Publishers, Platform Holders
 - Deal Dynamics, Payment Negotiation
 - Advertising, Media, Publicity Opportunities, Marketing
 - IP Protection, The IP Content of Video Games
 - Patents, Copyrights, Trademarks, Transfers of IP Rights
- 11. Video Game Content Regulation

Learning Activities and Teaching Methods:

Presentations, Textbook Exercises, Online Exercises

Assessment Methods:

Final Exam Project (Individual – Design & Implementation of a game Assignments

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
3D Game Programming: All in One, 3rd Ed	Kenneth C. Finney	Course Technology	2013	978-1-4354- 5744-7

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Introduction to Game Development, 2nd ed.	Edited by Steve Rabin	Course Technology	2010	978-1-58450-679-9

Game Programming Gems 8	Edited by Adam Lake	Course Technology, Cengage Learning	2011	978-1-58450-702-4
Mathematics for 3D Game Programming and Computer Graphics, 3rd Edition	Eric Lengyel	Course Technology, Cengage Learning	2012	978-1-43545-886-4