The contribution of this paper toward understanding of airborne coronavirus survival is twofold: We develop new theoretical correlations for the unsteady evaporation of coronavirus (CoV) contaminated saliva droplets. Furthermore, we implement the new correlations in a three-dimensional multiphase Eulerian–Lagrangian computational fluid dynamics solver to study the effects of weather conditions on airborne virus transmission. The new theory introduces a thermal history kernel and provides transient Nusselt (Nu) and Sherwood (Sh) numbers as a function of the Reynolds (Re), Prandtl (Pr), and Schmidt numbers (Sc). For the first time, these new correlations take into account the mixture properties due to the concentration of CoV particles in a saliva droplet. We show that the steady-state relationships induce significant errors and must not be applied in unsteady saliva droplet evaporation. The classical theory introduces substantial deviations in Nu and Sh values when increasing the Reynolds number defined at the droplet scale. The effects of relative humidity, temperature, and wind speed on the transport and viability of CoV in a cloud of airborne saliva droplets are also examined. The results reveal that a significant reduction of virus viability occurs when both high temperature and low relative humidity occur. The droplet cloud’s traveled distance and concentration remain significant at any temperature if the relative humidity is high, which is in contradiction with what was previously believed by many epidemiologists. The above could explain the increase in CoV cases in many crowded cities around the middle of July (e.g., Delhi), where both high temperature and high relative humidity values were recorded one month earlier (during June). Moreover, it creates a crucial alert for the possibility of a second wave of the pandemic in the coming autumn and winter seasons when low temperatures and high wind speeds will increase airborne virus survival and transmission.
The authors would like to thank the Editor-in-Chief and Physics of Fluids staff for their assistance during the peer-review and publication of this manuscript.
  1. M. Richard, J. van den Brand, T. Bestebroer, P. Lexmond, D. de Meulder, R. Fouchier, A. Lowen, and S. Herfst, “Influenza a viruses are transmitted via the air from the nasal respiratory epithelium of ferrets,” Nat. Commun. 11, 766 (2020). https://doi.org/10.1038/s41467-020-14626-0Google ScholarCrossref
  2. Z. Lei, Q. Yuhang, L.-F. Paolo, C. Yi, and Z. Yangying, “COVID-19: Effects of weather conditions on the propagation of respiratory droplets,” medRxiv (2020). https://doi.org/10.1101/2020.05.24.20111963Google ScholarCrossref
  3. R. Zhang, Y. Li, A. L. Zhang, Y. Wang, and M. J. Molina, “Identifying airborne transmission as the dominant route for the spread of COVID-19,” Proc. Natl. Acad. Sci. U. S. A. 117, 14857–14863 (2020). https://doi.org/10.1073/pnas.2009637117Google ScholarCrossref
  4. C. B. Beggs, “The airborne transmission of infection in hospital buildings: Fact or fiction?,” Indoor Built Environ. 12, 9–18 (2003). https://doi.org/10.1177/1420326×03012001002Google ScholarCrossref
  5. B. Killingley and J. Nguyen-Van-Tam, “Routes of influenza transmission,” Influenza Other Respir. Viruses 7, 42–51 (2013). https://doi.org/10.1111/irv.12080Google ScholarCrossref
  6. R. E. Davis, C. E. Rossier, and K. B. Enfield, “The impact of weather on influenza and pneumonia mortality in New York city, 1975–2002: A retrospective study,” PLoS One 7, e34091 (2012). https://doi.org/10.1371/journal.pone.0034091Google ScholarCrossref
  7. K. M. Gustin, J. A. Belser, V. Veguilla, H. Zeng, J. M. Katz, T. M. Tumpey, and T. R. Maines, “Environmental conditions affect exhalation of h3n2 seasonal and variant influenza viruses and respiratory droplet transmission in ferrets,” PLoS One 10, e0125874 (2015). https://doi.org/10.1371/journal.pone.0125874Google ScholarCrossref
  8. D. Zang, S. Tarafdar, Y. Yu. Tarasevich, M. Dutta Choudhury, and T. Dutta, “Evaporation of a droplet: From physics to applications,” Phys. Rep. 804, 1–56 (2019). https://doi.org/10.1016/j.physrep.2019.01.008Google ScholarCrossref
  9. S. S. Sazhin, “Advanced models of fuel droplet heating and evaporation,” Prog. Energy Combust. Sci. 32, 162–214 (2006). https://doi.org/10.1016/j.pecs.2005.11.001Google ScholarCrossref
  10. E. P. Vejerano and L. C. Marr, “Physico-chemical characteristics of evaporating respiratory fluid droplets,” J. R. Soc. Interface 15, 20170939 (2018). https://doi.org/10.1098/rsif.2017.0939Google ScholarCrossref
  11. W. E. Ranz and W. R. Marshall, “Evaporation from drops, Part I,” Chem. Eng. Prog. 48, 141–146 (1952). Google Scholar
  12. W. E. Ranz and W. R. Marshall, “Evaporation from drops, Part II,” Chem. Eng. Prog. 48, 173–180 (1952). Google Scholar
  13. P. Mecenas, R. Bastos, A. Vallinoto, and D. Normando, “Effects of temperature and humidity on the spread of COVID-19: A systematic review.” medRxiv:20064923 (2020). Google Scholar
  14. Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou et al., “Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia,” N. Engl. J. Med. 382(13), 1199–1207 (2020). https://doi.org/10.1056/NEJMoa2001316Google ScholarCrossref
  15. C. I. Paules, H. D. Marston, and A. S. Fauci, “Coronavirus infections-more than just the common cold,” JAMA 323, 707–708 (2020). https://doi.org/10.1001/jama.2020.0757Google ScholarCrossref
  16. M. Moriyama, W. Hugentobler, and A. Iwasaki, “Seasonality of respiratory viral infections,” Annu. Rev. Virol. 7, 2.1–2.19 (2020). https://doi.org/10.1146/annurev-virology-012420-022445Google ScholarCrossref
  17. R. Bhardwaj and A. Agrawal, “Tailoring surface wettability to reduce chances of infection of COVID-19 by a respiratory droplet and to improve the effectiveness of personal protection equipment,” Phys. Fluids 32, 081702 (2020). https://doi.org/10.1063/5.0020249Google ScholarScitationISI
  18. R. Bhardwaj and A. Agrawal, “Likelihood of survival of coronavirus in a respiratory droplet deposited on a solid surface,” Phys. Fluids 32, 061704 (2020). https://doi.org/10.1063/5.0012009Google ScholarScitationISI
  19. K. H. Chan, J. S. Malik Peiris, S. Y. Lam, L. L. M. Poon, K. Y. Yuen, and W. H. Seto, “The effects of temperature and relative humidity on the viability of the SARS coronavirus.” Adv Virol. 2011, 1–7https://doi.org/10.1155/2011/734690Google ScholarCrossref
  20. K. K.-W. To, O. T.-Y. Tsang, C. C.-Y. Yip, K.-H. Chan, T.-C. Wu, J. M.-C. Chan, W.-S. Leung, T. S.-H. Chik, C. Y.-C. Choi, D. H. Kandamby, D. C. Lung, A. R. Tam, R. W.-S. Poon, A. Y.-F. Fung, I. F.-N. Hung, V. C.-C. Cheng, J. F.-W. Chan, and K.-Y. Yuen, “Consistent detection of 2019 novel coronavirus in saliva,” Clin. Infect. Dis. 71, 841–843 (2020). https://doi.org/10.1093/cid/ciaa149Google ScholarCrossref
  21. R. Xu, B. Cui, X. Duan, P. Zhang, X. Zhou, and Q. Yuan, “Saliva: Potential diagnostic value and transmission of 2019-nCov,” Int. J. Oral Sci. 12, 1–6 (2020). https://doi.org/10.1038/s41368-020-0080-zGoogle ScholarCrossref
  22. N. L’Helgouach, P. Champigneux, F. Santos-Schneider, L. Molina, J. Espeut, M. Alali, J. Baptiste, L. Cardeur, B. Dubuc, V. Foulongne, F. Galtier, A. Makinson, G. Marin, M.-C. Picot, A. Prieux-Lejeune, M. Quenot, F. J. Checa-Robles, N. Salvetat, D. Vetter, J. Reynes, and F. Molina, “EasyCOV : Lamp based rapid detection of SARS-COV-2 in saliva,” medRxiv:20117291 (2020). Google Scholar
  23. L. Azzi, G. Carcano, F. Gianfagna, P. Grossi, D. D. Gasperina, A. Genoni, M. Fasano, F. Sessa, L. Tettamanti, F. Carinci, V. Maurino, A. Rossi, A. Tagliabue, and A. Baj, “Salivais a reliable tool to detect SARS-CoV-2,” J. Infect. 81, e45–e50 (2020). https://doi.org/10.1016/j.jinf.2020.04.005Google ScholarCrossref
  24. J. H. Azzolini, K. C. Winkler, and S. M. Kool, “Virus survival as a seasonal factor in influenza and poliomyelitis,” Nature 188, 430–431 (1960). https://doi.org/10.1038/188430a0Google ScholarCrossref
  25. J. Shaman, M. Kohn, and B. H. Singer, “Absolute humidity modulates influenza survival, transmission, and seasonality,” Proc. Natl. Acad. Sci. U. S. A. 106, 3243–3248 (2009). https://doi.org/10.1073/pnas.0806852106Google ScholarCrossref
  26. J. Shaman, E. Goldstein, and M. Lipsitch, “Absolute humidity and pandemic versus epidemic influenza,” Am. J. Epidemiol. 173, 127–135 (2011). https://doi.org/10.1093/aje/kwq347Google ScholarCrossref
  27. T. Myatt, M. Kaufman, J. Allen, D. MacIntosh, M. Fabian, and J. McDevitt, “Modeling the airborne survival of influenza virus in a residential setting: The impacts of home humidification,” Environ. Health 9, 55 (2010). https://doi.org/10.1186/1476-069X-9-55Google ScholarCrossref
  28. W. Yang and L. Marr, “Mechanisms by which ambient humidity may affect viruses in aerosols,” Appl. Environ. Microbiol. 78, 6781–6788 (2012). https://doi.org/10.1128/AEM.01658-12Google ScholarCrossref
  29. M. Sobsey and J. Meschke, “Virus survival in the environment with special attention to survival in sewage droplets and other environmental media of fecal or respiratory origin.” Res. Gate 1-71, 22855142 (2003). Google Scholar
  30. G. J. Harper, “Airborne micro-organisms: Survival tests with four viruses,” Epidemiol. Infect. 59(4), 479–486 (1961). https://doi.org/10.1017/s0022172400039176Google ScholarCrossref
  31. S. J. Webb, R. Bather, and R. W. Hodges, “The effect of relative humidity and inositol on air-borne viruses,” Can. J. Microbiol. 9, 87–92 (1963). https://doi.org/10.1139/m63-009Google ScholarCrossref
  32. T. Dbouk and D. Drikakis, “On coughing and airborne droplet transmission to humans,” Phys. Fluids 32, 053310 (2020). https://doi.org/10.1063/5.0011960Google ScholarScitationISI
  33. I. B. Celik, U. Ghia, P. J. Roache, and C. J. Freitas, “Procedure for estimation and reporting of uncertainty due to discretization in CFD applications,” J. Fluids Eng. 130, 078001 (2008). https://doi.org/10.1115/1.2960953Google ScholarCrossref
  34. F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab1st ed. (Springer Publishing Company, Incorporated, 2015). Google Scholar
  35. T. Miyoshi, M. Lönnfors, J. Peter Slotte, and S. Kato, “A detailed analysis of partial molecular volumes in DPPC/cholesterol binary bilayers,” Biochim. Biophys. Acta (BBA) 1838, 3069–3077 (2014). https://doi.org/10.1016/j.bbamem.2014.07.004Google ScholarCrossref
  36. C. Hidalgo, Physical Properties of Biological Membranes and Their Functional Implications (Plenum pressNew York, London, 1988). Google ScholarCrossref
  37. S. Youssefian, N. Rahbar, C. R. Lambert, and S. Van Dessel., “Variation of thermal conductivity of DPPC lipid bilayer membranes around the phase transition temperature,” R. Soc. Interface 14, 20170127 (2017). https://doi.org/10.1098/rsif.2017.0127Google ScholarCrossref
  38. W. Fuchs, “Z. d. sowj.-union6,” Physik 224 S (1934). Google Scholar
  39. W. F. Wells, “On air-borne infection: Study II. Droplets and droplet nuclei,” Am. J. Hyg. 20, 611–618 (1934). https://doi.org/10.1093/oxfordjournals.aje.a118097Google ScholarCrossref
  40. N. Frossling, “Uber die verdunstung fallender tropfen (the evaporation of falling drops),” Gerlands Beitrage Geophys. 52 (1938). Google Scholar
  41. A. Acrivos and T. D. Taylor, “Heat and mass transfer from single spheres in Stokes flow,” Phys. Fluids 5, 387–394 (1962). https://doi.org/10.1063/1.1706630Google ScholarScitationISI
  42. H. Brenner, “Forced convection heat and mass transfer at small Péclet numbers from a particle of arbitrary shape,” Chem. Eng. Sci. 18, 109–122 (1963). https://doi.org/10.1016/0009-2509(63)80020-2Google ScholarCrossref
  43. P. D. Richardson, WADD 59-1, 1968. Google Scholar
  44. S. Whitaker, “Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles,” AIChE J. 18, 361–371 (1972). https://doi.org/10.1002/aic.690180219Google ScholarCrossref
  45. H. Kramers, “Heat transfer from spheres to flowing media,” Physica 12, 61–80 (1946). https://doi.org/10.1016/S0031-8914(46)80024-7Google ScholarCrossref
  46. C. Vliet and J. C. Leppert, “Closure to “discussions of ‘forced convection heat transfer from an isothermal sphere to water’” (1961, ASME J. Heat Transfer, 83, pp. 170–175),” J. Heat Trarnsfer 83, 170–175 (1961). https://doi.org/10.1115/1.3680509Google ScholarCrossref
  47. Z.-G. Feng and E. E. Michaelides, “Unsteady heat transfer from a sphere at small Péclet numbers,” J. Fluid Eng. 118, 96–102 (1996). https://doi.org/10.1115/1.2817522Google ScholarCrossref
  48. Z.-G. Feng and E. E. Michaelides, “Transient heat transfer from a particle with arbitrary shape and motion,” J. Heat Transfer 120, 674–681 (1998). https://doi.org/10.1115/1.2824336Google ScholarCrossref
  49. Z.-G. Feng and E. E. Michaelides, “A numerical study on the transient heat transfer from a sphere at high Reynolds and Péclet numbers,” Int. J. Heat Mass Transfer 43, 219–229 (2000). https://doi.org/10.1016/s0017-9310(99)00133-7Google ScholarCrossref
  50. Z.-G. Feng and E. E. Michaelides, “Heat and mass transfer coefficients of viscous spheres,” Int. J. Heat Mass Transfer 44, 4445–4454 (2001). https://doi.org/10.1016/s0017-9310(01)00090-4Google ScholarCrossref
  51. Z. Duan, B. He, and Y. Duan, “Sphere drag and heat transfer,” Sci. Rep. 5, 1–7 (2015). https://doi.org/10.1038/srep12304Google ScholarCrossref
  52. P. Yearling and R. Gould, Convective Heat and Mass Transfer from Single Evaporating Water, Methanol and Ethanol Droplets (American Society of Mechanical EngineersNew York, NY, USA, 1995). Google Scholar
  53. E. Pfender, “Heat and momentum transfer to particles in thermal plasma flows,” Pure Appl. Chem. 57(9), 1179–1195 (1985). https://doi.org/10.1351/pac198557091179Google ScholarCrossref
  54. T. H. Chilton and A. Colburn, “Mass transfer (absorption) coefficients prediction from data on heat transfer and fluid friction,” Ind. Eng. Chem. 26, 1183–1187 (1934). https://doi.org/10.1021/ie50299a012Google ScholarCrossref
  55. E. Pohlhausen, “Der wärmeaustausch zwischen festen körpern und flüssigkeiten mit kleiner reibung und kleiner wärmeleitung,” ZAMM-J. Angew. Math Mech. 1, 115–121 (1921). https://doi.org/10.1002/zamm.19210010205Google ScholarCrossref
  56. T. Dbouk and D. Drikakis, “On respiratory droplets and face masks,” Phys. Fluids 32, 063303 (2020). https://doi.org/10.1063/5.0015044Google ScholarScitationISI
  57. V. Vinoj, N. Gopinath, K. Landu, B. Behera, and B. Mishra, “The COVID-19 spread in India and its dependence on temperature and relative humidity,” arXiv:2020070082 (2020). Google Scholar

    Published under license by AIP Publishing.

    You can read the full paper here