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The success of deep learning models in fluid dynamics applications will depend on their ability to handle sparse and

noisy data accurately. This paper concerns the development of a deep learning model for reconstructing turbulent flow

images from low-resolution counterparts encompassing noise. The flow is incompressible through a symmetric, sudden

expansion featuring bifurcation, instabilities and turbulence. The deep learning model is based on convolutional neural

networks, in a high-performance, lightweight architecture. The training is performed by finding correlations between

high- and low-resolution two-dimensional images. The study also investigates how to remove noise from flow images

after training the model with high-resolution and noisy images. In such flow images, the turbulent velocity field is

represented by significant color variations. The model’s peak signal-to-noise ratio is 45, one of the largest achieved for

such problems. Fine-grained resolution can be achieved using sparse data at a fraction of the time required by large-eddy

and direct numerical simulation methods. Considering its accuracy and lightweight architecture, the proposed model

provides an alternative when repetitive experiments are complex and only a small amount of noisy data is available.

I. INTRODUCTION

Super-resolution (SR) deep learning models have exten-

sively been used in computer vision applications1, and more

recently in fluid dynamics; see2 for a recent review. Super-

resolution can advance experimental3,4 and computational

fluid dynamics (CFD) research.5,6

In experiments, cameras can be used to obtain spa-

tiotemporal flow images.7 In numerical simulations, SR can

be used to upscale low-resolution (LR) images into high-

resolution (HR), enhancing the spatial and temporal resolu-

tion in two-dimensional (2D) and three-dimensional (3D) flow

simulations.6,8–12 This can reduce the need to perform com-

putationally demanding large and complex numerical simula-

tions.

Despite the SRs’ potential to contribute to fluid dynamics

research and applications, several areas regarding the perfor-

mance of the SR architectures deserve further study, particu-

larly the datasets’ effects of sparsity and noise.2,13–15 Sparsity

is a common factor in most applications16, as it is more likely

limited experimental data will be available and numerical sim-

ulations are often under-resolved. Noise can be present in

imaging obtained in laboratory and field experiments. For ex-

ample, noise may occur during the image acquisition process

due to low incoming radiation, image blur due to movement,

or even hardware misfits that affect the obtained result.17 That

sparsity and noise can significantly affect DL model training,

as a recent study showed.18 Efforts to diminish noise in DL

models have been presented in the literature.19,20

Deep learning architectures are usually constructed by con-

secutive neural network (NN) layers21, properly intercon-

nected to embed non-linear mathematical equations. In hard-

ware terms, NN nodes are usually built on parallel cores (e.g.,

a)Electronic mail: Author to whom correspondence should be addressed:

drikakis.d@unic.ac.cy

Graphical Processing Units - GPUs), with the aid of software

backbones based on TensorFlow22, Keras23, and PyTorch24,

most of the times. Common NN architectures for super-

resolution can be categorized according to the increasing com-

plexity; see the survey by Anwar, Khan, and Barnes 25 :

• Linear networks, with feed-forward calculations only.
• Residual networks, where skip connections are formed

between different network layers.
• Recursive networks, which employ recursively con-

nected layers.
• Progressive recursive networks that provide the output

in more than one step.
• Densely connected networks, where the output is usu-

ally connected to previous layers, back-propagating or

with residual connections.
• Multi-branch networks, where different branches func-

tion in parallel and re-combine at the end to give richer

image representations.
• Attention-based networks, selective in a way that fo-

cuses on features significantly affecting the SR result

only.
• Multiple-degradation handling networks that consider

other image degradation methods as inputs rather than

bicubic degradation that the other models do
• Generative adversarial networks (GANs), where a gen-

erator and a discriminator network are created. The

generator creates images, and the discriminator tries to

find if these are real or artificial, selecting the best result

each time.

The above architectures have been widely incorporated in

computer vision and image classification applications. One

can refer to the survey of Wang, Chen, and Hoi 26 for a de-

tailed analysis of such methods and relevant datasets.

An example of a fully operational architecture is the U-

Net27, which has been employed as the base design network

for imaging applications such as super-resolution, image seg-

mentation, and image encryption, outperforming similar but

more complex ones (e.g., U-Net++ and V-Net).28 In many
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of these approaches, bicubic or deconvolution techniques are

employed for up-sampling images. Some inherent problems

in these traditional methods include low performance in the

up-sampling of small-sized images and a low-pass filtering

behavior, leading to the loss of high-frequency information

and the blurring of image edges.

Increased reconstruction performance is also achieved by

considering skip connections between the U-type layers, from

the first layers, where information is richer, to the final lay-

ers responsible for the reconstruction in the ResNet.29 All

these architectures have been incorporated into various ap-

plications, from classical image processing30–32 to speech

recognition33 and flow reconstruction.6,26,34–36 At present,

cutting-edge approaches for image reconstruction have moved

to more complex architectures, such as GANs37. Notwith-

standing their effectiveness, GANs may be in cases prone to

over-fitting38, as U-Net-based architectures as well39, while

the generated images may have an over-repaired sense of un-

reality.40 The main problem, though, is the increased com-

putational cost, compared to U-Net based architectures, that

makes their use unpractical for lightweight applications.

The flow in question is a turbulent flow through a sudden

expansion geometry commonly encountered in hydraulics,

medical applications, mechanics, microjets, heat exchangers,

nuclear applications, oil and gas extraction, combustion, and

air ducts.41–44 Planar sudden expansion flows are fascinating

examples of asymmetric and complex unstable flow physics

even when the geometry is fully symmetric.45 This behavior

could be ascribed to the Coanda effect46, but the exact mech-

anism is still not fully understood despite many years of re-

search. Suddenly, expanded flows remain symmetric up to a

certain Reynolds number, Re, with two recirculation regions

of equal length formed on either side of the expanding chan-

nel. As the Re increases, the flow becomes asymmetric about

its centerline and separation regions of unequal length arise

and remain in the flow field even up to high Reynolds num-

bers.

Several studies were performed in the laminar flow regime,

including numerical and experimental investigations.45,47,48

Moallemi et al.49 showed using DNS that bifurcation initiates

at higher Reynolds numbers as the expansion ratio decreases.

Karantonis et al.50 performed implicit Large Eddy Simula-

tions at high Reynolds numbers and comparisons with exper-

imental measurements. The authors investigated the structure

of the separated regions, turbulence structures – through the

Reynolds stress anisotropy componentality – and turbulence

kinetic energy budgets. The results revealed that compress-

ibility influences particular flow physics and a great deal of

complexity within the asymmetric regions downstream of the

expansion.

In this paper, we implement a super-resolution architecture

called Deep Learning Flow Image (DELFI), based on a simple

and practical U-Net structure27 capable of running fast even

in standard computer hardware. The sudden expansion flow

setup of the past experimental and computational studies50,51

has been employed to investigate the DELFI model and as-

sess its performance in reconstructing blurred (pixelated) and

noisy flow fields with asymmetries, turbulence and separa-

tion. DELFI is investigated for its ability to process both pixe-

lated and noisy images, which fundamentally involve different

distortions. While blurred image pixels (i.e., from a sparse

field) spread over their neighbourhood, making it harder to

distinguish between flow details, noise causes random vari-

ations in pixel values without altering the spatial image fea-

tures. Nonetheless, we show that DELFI can successfully re-

construct the flow field in both distortion cases over a wide

range of downscaled images and different levels of Gaussian

and uniform noise, which, to our knowledge, has not been

shown to such an extent before. Quantitatively, the derived

peak signal-to-noise (PSNR) ratio reaches PSNR ≊ 45.0, a

top-performing value in the field.

Therefore, the proposed architecture and its ease of imple-

mentation can be employed in practical engineering problems

after being trained from scratch with only a small amount of

input images or used as a pre-trained model through a transfer

learning approach. In the following Sections, the employed

CFD dataset is presented, the DL architecture components are

described, training/testing details are given, and the model’s

results for pixelated and noisy data are analyzed. Finally, a

comparison and discussion on existing architectures are made,

and future research directions are given.

II. MODELS AND METHODS

A. CFD model and turbulent flow setup

The data for investigating the DELFI’s model performance

concerns a turbulent flow through a suddenly-expanded chan-

nel. The CFD model and its validation were presented in a

previous study.50 A summary of the model and the data is

given below.

The flow case corresponds to a relatively high Reynolds

number of 10,000, based on the inlet bulk velocity and the

step height of the channel (h) to investigate the asymmet-

ric flow.51 The Mach number based on the bulk velocity at

the channel inlet is 0.1, which, after expansion, is reduced

by one-third. Figure 1 shows a schematic of the sudden ex-

pansion, which comprises two channels, each of a different

height. The flow domain consists of an inlet channel of height

h and a downstream channel of height H = 3h, resulting in

an expansion rate (ER = H/h) 3. The characteristic length of

the channel is the step height, h, with a value of 1. The total

length of the domain is 84h. The inlet and downstream chan-

nels have lengths of 4h and 80h, respectively. These particular

geometrical features were chosen to ensure that the flow (a) is

fully developed (turbulent) before reaching the expansion step

and (b) the buffer layer at the end of the domain has damped

unsteadiness in the flow before exiting the domain. Finally,

the aspect ratio (AR = W/h) of the channel inlet section is 5.

An illustration of the three-dimensional turbulent flow field is

provided in Fig. 2.

The simulations were performed using the block-structured

grid code CNS3D, which solves the Navier-Stokes equations

using the finite-volume method (FVM). CNS3D can be used

for implicit Large Eddy Simulations (ILES) and DNS. The
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FIG. 1. Illustration of the planar sudden expansion (PSE) configuration. Streamlines of the mean velocity depict the asymmetric flow bifurca-

tion and the recirculation bubbles.

FIG. 2. Contour plot of the vorticity magnitude illustrating the flow asymmetry, turbulent boundary and shear layers.

advective terms are solved using the Godunov-type (upwind)

method, whose inter-cell numerical fluxes are calculated by

solving the Riemann problem using the reconstructed val-

ues of the primitive variables at the cell interfaces. A one-

dimensional swept unidirectional stencil is used for the spa-

tial reconstruction. The numerical simulations herein were

obtained using an augmented 11th-order WENO scheme52

for interpolation in conjunction with the approximate HLLC

Riemann solver.53 The solution is advanced in time using

an explicit five-stage (fourth-order accurate) optimal strong-

stability-preserving Runge-Kutta method54. Further details

of the numerical aspects of the code can be found in past

literature52,55 and references therein.

A synthetic turbulent boundary condition based on the digi-

tal filter (DF) technique was also implemented at the inlet.56,57

The DF approach produces a velocity signal in three direc-

tions by matching ad hoc first- and second-order statistical

moments, length and time scales, and energy spectra. We se-

lected the DF approach for generating artificial inflow data

as the filtering operation was applied only in 2D (rather than

3D), making the whole process much faster and computation-

ally efficient. A buffer layer was employed at the outflow to

avoid any numerical reflections. Standard no-slip, viscous,

and adiabatic wall boundary conditions were assigned to the

boundary surfaces in the wall-normal (y) direction. Periodic

conditions were chosen for the boundary surfaces normal to

the spanwise (z) direction.

CNS3D produced the turbulent data in the wall-resolved

implicit large eddy simulation (ILES) framework. The mesh

spacing (∆y) was scaled using the conventional inner variable

method ∆y+ = uτ ∆y/νw, where uτ =
√

τw/ρw is the friction

velocity, νw, τw and ρw are the near-wall kinematic viscosity,

wall shear-stress, and density, respectively58. The grid reso-

lution at the channel inlet in the streamwise, wall-normal and

spanwise directions is ∆x+ ≃ 26, y+w = 1 (corresponding to

y+ = 0.5 in the first cell-centre off the wall), and ∆z+ ≃ 15,

respectively. At the expansion corner, ∆x+ ≈ y+w . The grid

gradually coarsens towards the exit boundary, reaching ap-

proximately a value of ∆x+ ≃ 50 at the expected L1 ≃ 14.4h

(location of upper recirculation layer re-attachment). After

that, it increases linearly towards the outlet, eventually reach-

ing a value of ∆x+ ≃ 180. In total, the computational domain

contains 34,810,000 cells. The grid resolution and numeri-

cal scheme yielded accurate results55 for wall-bounded turbu-

lent flows at low Mach numbers. The present fine mesh cor-

responds to wall-resolved ILES following typical resolution

recommendations for LES and DNS simulations59–61.

The total simulation time was 300h/UB, from which statis-
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tics were obtained over the last 100h/UB, where UB is the

bulk velocity of the channel inlet, and h is its height. Over the

statistics period, 407 images of the 2D surface contour plot

of the streamwise velocity are extracted at a constant time in-

terval. The above is carried out at three equidistant z-normal

(xy) planes, namely at z/h = 1.0, 2.5, and 4.5, to enhance the

image sample size further. Thus, a total of 1,221 images are

available for the present study.

B. Deep Learning Flow Image Model

The proposed image reconstruction architecture (DELFI)

is based on convolution operations and implemented in

TensorFlow.22 Convolutional Neural Networks (CNN) are

widely incorporated in computer vision applications62 and,

recently, they have found application in fluid flow investi-

gation, such as turbulence, as they can extract complex spa-

tial patterns.63 One of the main features distinguishing CNNs

from classical Artificial Neural Networks (ANNs) is their

sparse interactions between inputs and outputs, resulting in

lower computational burden and memory requirements, mak-

ing them appropriate for dealing with big data applications

and complex fluid-related tasks.64

CNN involve operations such as convolution, deconvolu-

tion, average and max pooling, and batch normalization65,

functioning in layers according to the flow of information. For

2D data, e.g., images, the input layer accepts the data as an ar-

ray of pixel values in 3 layers in color images (RGB image) or

one layer (grayscale image). Pixel values represent a property

of interest. In this paper, pixels denote velocity values. These

values, before processing, are normalized between 0 and 1 to

increase the network’s generalization ability and prevent is-

sues associated with biases during calculations.

As per the flowchart presented in Fig. 3, the model accepts

an LR image set of dimensions (W/n×H/n×3) as the train-

ing set, along with the respective high-quality image set (HR)

of sizes (W ×H×3), which serves as the ground truth66. Flow

images are pre-processed so the correct dimensions are fed to

the model. To make the comparison between HR and LR im-

ages possible, they must be of the same dimension. At first,

the LR set is resized through linear interpolation techniques to

(W ×H ×3) adhere to HR dimensions.

Next, the image passes through consecutive CNN layers

representing the multichannel feature maps27. The first layer

is convolutional (TensorFlow Conv2D function) with 64 fil-

ters, where each filter detects specific image patterns within

different frequency ranges. These filters are created with

a convolutional kernel, a 3 × 3 array, applying on consec-

utive input image regions, followed by a ReLU activation

function67. Information from the first CNN layer is trans-

ferred to a second CNN layer, with 64 filters and a ReLU

function on the output. These two CNN layers consist of

the contraction mechanism of DELFI. During deconvolution

(expansion path), residual information is added directly from

the input image to restore possible losses, and a deconvolu-

tion layer (TensorFlow Conv2DTranspose function) follows.

The final layer gathers all filters to an image with dimensions

(W ×H × 3). This is the reconstructed output. During this

process, the image size is not altered by appropriately set-

ting the strides and padding parameters, e.g., strides=1 and

padding=zero. The features of DELFI and its performance

compared to similar architectures are also discussed in Sec.

§ III C.

C. Training and Testing Data

The HR dataset contains 1221 randomly divided into 976

training images and 245 testing images. Training images

are fed into the model, and testing images are kept for post-

processing to ensure the model works fine when unseen im-

ages are fed. The model is trained both with LR (pixelated)

and noisy images. The first step includes six image sets of

various resolutions to train and validate the constructed com-

putational model. The LR images are produced by divid-

ing the HR image dimensions by a scale factor of n, where

n = 2,4,6,8,10,12, giving six LR sets, LR1, LR2, LR3, LR4,

LR5, and LR6, respectively. This process reduces image di-

mensions (see Table I) and has been widely incorporated to

train similar image reconstruction models68–70. To proceed in

image reconstruction and be able to compare with the ground

truth images, the LR images are resized back to the original

dimensions through linear interpolation (Fig. 3a). In such a

way, the final LR sets are pixelated instances of the respec-

tive HR images. They can be considered physical equivalents

produced by DNS simulations on sparse grids.

Another training instance employs images with added

noise, which resembles real experimental procedures. This

paper examines the effects of Gaussian and uniform noise.71

When Gaussian noise is added to an RGB (Red, Green, Blue)

image, it introduces random variations in pixel values, cor-

responding to the case of images captured in low-light con-

ditions or with electronic sensors that introduce noise. The

Gaussian noise fg(x) depends on the noise amplitude and is

given by72:

fg(x) =
1

σ
√

2π
exp

(

− (x−µ)2

2 ·σ2

)

(1)

where µ is the mean, σ the standard deviation, and x denotes

the deviation from the mean. In the case of uniform noise

fu(x), it follows a uniform distribution, creating a more con-

stant level of randomness, resembling sensor artifacts or im-

perfections in imaging devices, as73:

fu(x) =
1

2σ
(2)

where x is the random variable that can take on values between

σ and −σ .

III. RESULTS

The computational fluid dynamics results employed in the

present study had been extensively examined and compared to

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
0
1
6
7



Preprint 5

FIG. 3. (a) Flow image pre-processing, where LR, Gaussian and uniform (white noise) image sets are constructed for model training and

testing. Random regions of the HR image are shown. (b) The proposed architecture. The model accepts LR or noisy input images and

reconstructs flow characteristics into a higher resolution counterpart, the predicted image. The HR images are employed as the ground truth

and are compared to the predicted images.

TABLE I. Dimensions of training/testing images, derived from the original high-resolution image input(s), i.e., the ground truth images, for

which (W ×H ×N) = (2296×325×3). Each image is given in RGB format, i.e., in three channels (N = 3).

Resolution LR1 LR2 LR3 LR4 LR5 LR6

Dimensions 1148×162×3 574×81×3 382×54×3 287×40×3 229×32×3 191×27×3

the literature previously50. One of the key indicators used in

sudden expansion flows is the locations of the separation and

reattachment of the recirculation bubbles that form. The reat-

tachment lengths (xR) found in the literature of planar sudden

expansion (PSE) flows along with the corresponding geomet-

rical properties are all summarized and presented in Table II.

Note that there are slight differences in the geometric and/or

flow properties between the various experimental and numeri-

cal studies referenced, which cause the differences in the reat-

tachment lengths quoted.

A. Super Resolution

DELFI is individually trained with six image sets of vari-

ous resolutions (Fig. 3), creating six different model instances.

Results are examined and analyzed on these instances, named

LR1-LR6, with the name corresponding to the respective in-

put image resolution used for training (LR1 to LR6, see Ta-

ble I). During every computational time step, the input LR im-

age is first linearly interpolated to higher dimensions to com-

ply with the HR basis of comparison, i.e., 2296×325×3.

Imaging applications employ the peak signal-to-noise ratio

(PSNR) metric to assess the quality of reconstruction.78 The

PSNR for the ith image in an image set is given by:

PSNRi = 20log(
1

√

MSE(HRi,RECi)
) (3)

where HR is the high-resolution and REC is the reconstructed

image. A higher PSNR value represents a better reconstruc-

tion.

The average PSNR is calculated for all model instances,

and the results are presented in Fig. 4. Each model has been

trained with the respective image set; for example, the LR1

instance has been trained with LR1 images, the LR2 time in-

stance with LR2 images, and so forth. During testing, where

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
0
1
6
7



Preprint 6

TABLE II. Literature review on the primary reattachment lengths of a turbulent planar sudden expansion flow. †Study from which flow results

are taken to create the high-resolution images.

Author(s) Re
(

×104
)

ER (H/h) AR (W/h) Uinlet profile L1, L3 (h)

Abbott and Kline 74 2-5 1.125-5 2-16 Fully developed 11-15, 3.5-4

Mehta 75 12.5 3 0.25 Fully developed 15, 4.5
Aloui and Souhar 44 3.2 2.27 0.18 Fully developed 10.8, 5.4
De Zilwa, Khezzar, and Whitelaw 76 2.65 2.86 12.31 Uniform 17, 3.4
Escudier, Oliveira, and Poole 77 5.55 4 5.33 Uniform 11.5, 3.13

Casarsa and Giannattasio 51 1 3 10 Fully developed 14.38, 3.68

Karantonis et al. 50 ,† 1 3 5 Fully developed 16.57, 3.82

the models reconstruct an image from an unseen dataset, all

image sets, from LR1 to LR6, are fed into each model in-

stance, and the PSNR values are tabulated. The highest PSNR

is obtained for the LR1 model when the testing input is of

LR1 resolution, i.e., only with a slight blurring compared to

the ground truth. However, from a broader point of view, this

fails to reconstruct images of lower resolutions, especially for

LR3 to LR6, since the PSNR values here are relatively small.

FIG. 4. Values of PSNR for all LR1-LR6 model instances employed.

The models are trained with their respective image resolution and

validated with all available LR images. Different colors correspond

to different testing inputs, according to the legend.

The LR2 (trained with LR2 resolution) performs fairly well

when LR1 and LR2 inputs are to be reconstructed to their re-

fined counterparts. The LR3 performs equally well for LR2

and LR3 inputs but fails in more pixelated images. It is also

shown that LR4, LR5, and LR6 perform similarly for all in-

put resolutions. Another point worth mentioning is that LR5

and LR6 trained models have given higher PSNR when the

inputs are of LR1-LR3 resolution compared to LR5-LR6 in-

puts. It seems that these models, although being trained with

very low-resolution inputs, can perform relatively well on re-

constructing less pixelized images. This is evidence of low

(or not at all) over-fitting since the model is not bound only to

effective LR5 and LR6 image reconstruction and can perform

equally well outside this resolution range.

Some more general remarks can also be derived from Fig.

4. First, it is evident that models trained only with lower im-

age resolution images, such as LR4-LR6, cannot be employed

on high-performance applications. Second, all model time in-

stances except LR1 perform well when asked to reconstruct

an image of LR2 resolution. LR2 images are of dimension

(W/4×H/4×3), i.e., four times smaller than the fine input of

(W ×H ×3). This reveals that when a sparse simulation grid

is employed, four times smaller than the respective accurate

DNS grid, the proposed model is capable of bypassing the in-

herent computational complexity and excess time needed for

DNS simulations by considering a sparser grid and feeding

the results into the DELFI reconstruction model.

To view the error induced during reconstruction, error heat

maps are extracted for a sample HR/REC couple. The abso-

lute difference between the images is calculated for every ith

pixel, as Di f f . = |HRi −RECi|. Figure 5 presents the errors

produced after reconstructing an example image of LR1-LR6

resolution. The errors are practically zero for LR1 and remain

low for LR2(Figs. 5a and b). The error increases in the LR3

case (Fig. 5c), reaching about 30% in regions where high-

velocity values from the input jet combine with low-velocity

regions. These include the boundary before the contraction

and the internal line that follows the jet development inside

the contracted area. As expected, the error increases for LR4,

LR5, and LR6 in Figs. 5d, e, and f, respectively, since the re-

construction performance for DELFI is lower in these cases,

as also seen from the PSNR values in Fig. 4.

Furthermore, the calculated PSNR values shown in Figs. 4

are verified by presenting specific regions from the flow field

and their similarity to the refined image prototype. Four dif-

ferent areas from the flow field are selected for presentation,

i.e., Region 1 after the expansion input, Region 2 on the top

where the jet meets the boundary, Region 3 on the bottom

limit of the jet where the flow begins to stabilize, and Region

4 towards the outlet. These regions, for three random time

instances, are shown in Fig. 6

The model instances trained and validated with LR1 (which

have given the highest PSNR), LR2, and LR3 images are pre-

sented in Fig. 7. The four regions are numbered (1 to 4), and

the LR and the reconstructed super-resolution image (hence-

forth labeled as SR) are given for every instance. The HR re-

gions are also shown for comparison. LR1 images are slightly

blurred, and the reconstructed image sections (Fig. 7c) present

very close similarity to the respective ground truth regions.
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FIG. 5. Error heat maps, denoting the difference between an example

HR image and reconstructed images, resulting from an input resolu-

tion of (a) LR1, (b) LR2, (c) LR3, (d) LR4, (e) LR5, and (f) LR6.

This instance achieved PSNR = 42.75. When trained and val-

idated with LR2 images, the model also gives high PSNR.

The SR counterparts recover small color regions of the flow;

see, for example, Fig. 7e.1, and de-blurring the edges when

needed (Fig. 7e.4). The LR3 instance also results in a good

reconstruction (Fig. 7g). However, training with a resolution

that scales below 8 (e.g., LR4-LR6) has not accurately repro-

duced the ground truth images.

FIG. 6. Various time instances of the velocity flow field and four

different regions in which the super-resolution is focused, in (a) the

beginning of the flow, (b) in an intermediate time step, and (c) near

the end of the flow. Arrows indicate the cross-sections where velocity

profiles have been extracted.

B. Noise Reduction

The second step incorporates adding Gaussian and uniform

noise patterns to the HR image. Image pixels have values nor-

malized within 0−1. Various Gaussian noise patterns are ex-

amined, with mean values µ = 0.0 and standard deviations in

the range σ = [0.025,0.05,0.075,0.1]. Uniform noise levels

tested refer to constant values of noise being added on each

pixel within levels, l, as l = [0.1,0.2,0.3,0.4,0.5].
The obtained PSNR is given in Fig. 8. Uniform noise lev-

els are added to the respective HR images (Fig. 8a). Re-

markable performance is achieved for all investigated cases,

with the highest PSNR = 42.76 obtained for l = 0.1, while

PSNR = 34.83 is obtained for l = 0.5, although degradation

is significant at such level. Regarding the Gaussian noise in-

stances (Fig. 8b) starting from a distribution with µ = 0.0
and σ = 0.025, PSNR = 38.35 is obtained. The perfor-

mance falls by considering a distribution with σ = 0.075, as

PSNR = 17.56.

Regarding the reconstruction error, Fig. 9 presents the heat

maps for a uniform noise reduction process for various noise

levels. Noise reduction is successful in most regions inside the
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FIG. 7. Flow reconstruction results when the model is trained and validated with LR1-type images. (a) The ground truth regions of HR

resolution are used for reference, and the respective (b) LR1, (c) LR1 reconstructed, (d) LR2, (e) LR2 reconstructed, (f) LR3, (g) LR3

reconstructed.

channel, except for regions where high-velocity values from

the input jet combine with low-velocity regions, as was also

observed in Fig. 5. Nevertheless, error values for l = 0.1−0.5
remain below 15% for all cases investigated.

The four image regions before and after reconstruction are

also presented for various noise levels. Figure 10 shows the

HR, the uniform-noise region (UNR) for l = 0.1 (UNR-0.1),

and the respective reconstructed image, SR-0.1. The recon-

structed result is very close to the ground truth. Even when

increasing the noise level to l = 0.3 (Fig. 10d), the model re-

constructs the fields efficiently (Fig. 10e). The highest noise

effect investigated here, at l = 0.5, has given significant image

degradation in Fig. 10f. Nevertheless, the reconstructed result

(Fig. 10g) is still very close to the HR counterpart.

When Gaussian-type noise is added to the flow images, the

effect is more prominent, and reconstruction achieves slightly

lower metrics than the uniform noise instances, at least in the

noise level range examined here. The reconstruction error in

Fig. 11 reaches 15% in many regions inside the contracted

area, especially for GNR = 0.1 (Fig. 11d).

As for the local investigation and the respective optical re-

sult, in Fig. 12a-c, where (i) the HR, (ii) the Gaussian noise

regions (GNR) for σ = 0.025 (GNR-0.025), and (iii) the re-

constructed image, SR-0.025, are shown, the reconstruction

method has removed the noise. A significant part of the Gaus-

sian noise has also been removed from GNR-0.05 for the case

of σ = 0.05, as evident in Fig. 12e. However, Fig. 12g shows

that for σ = 0.075, the model could not remove its effect com-

pletely.

C. Comparison with other CNN Architectures

Next, DELFI’s performance will be compared with other

literature models dealing with fluid-related image reconstruc-

tion (Fig. 13). All models are selected from relevant papers

during 2019-2023. The main selection criterion was the exis-

tence of a fluid reconstruction method presented, along with

the obtained PSNR value given. We also included cases where

the L2 norm or the MSE is given (considering L2 ≊ MSE) and

incorporated Eq. (3) to calculate PSNR.

The downsampled skip-connection/multi-scale (DSC/MS)

architecture79 was found to accurately reconstruct turbulent

flows from coarse field images for a wide range of appli-

cations in both laminar and turbulent flows. By examining

the effect of pooling layers, the average pooling was superior

to max pooling in robustness. An autoencoder was also uti-

lized for the reconstruction.80 The autoencoder convolutional

neural network (AE-CNN) consists of a CNN followed by a

multi-linear perceptron (MLP) to reduce image dimensions

for practical computations and an inverse architecture for the

decoder, achieving similar performance to DSC/MS.

Based on the U-Net architecture, the multi-scale temporal

path U-Net (MST-UNET) architecture was modified to recon-
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FIG. 8. Values of PSNR for models with added (a) uniform and (b)

Gaussian noise. Error bars denote the standard deviation. Lines are

a guide to the eye.

struct both temporal and spatial fields.81 Taking into consider-

ation the LR spatial data and combining the flow fields at var-

ious time steps as the flow proceeds, MST-UNET was found

to improve prediction accuracy. Among various multi-branch

network base architectures investigated by Kong et al. 82 , the

CNN-III architecture achieved the highest PSNR in a super-

sonic isolator flow field.

Regarding GANs, the super-resolution GAN (SRGAN)12

was applied to increase the resolution of all fields and to ex-

tract velocity values parallel to the wall derived from shear

stress and pressure measurements. The training images were

taken from DNS simulations for Reτ = 180.

Jeon and You 83 investigated various architectures for re-

constructing velocity fields from transitional boundary lay-

ers. The study included the linear super-resolution convolu-

tional neural network (SRCNN)84 that provided a relatively

low PSNR, as well as the ESRGAN architecture.37. The

highest PSNR score was reported by Kong et al. 78 using the

multiple path super-resolution convolutional neural network

(MPSRC). The super-resolution reconstruction of tempera-

ture fields gave PSNR > 50.0. The temperature fields inves-

tigated were relatively smooth, without extreme color varia-

tions, where even the simple SRCNN architecture achieved

PSNR ≊ 47.0.

DELFI, on the other hand, belongs to the residual networks

FIG. 9. Error heat maps, denoting the difference between an example

HR image and reconstructed images, resulting from a noisy input

with uniform noise level: (a) l = 0.1, (b) l = 0.2, (c) l = 0.3, (d)

l = 0.5.

category. It employs a relatively simple architecture, with two

convolutions, one deconvolution and one residual layer. As

shown from the reconstruction outputs for both pixelated and

noisy images (Section § III), the model provides high PSNR

despite its simplicity. The PSNR ≊ 45.0 is among the high-

est in the literature (Fig. 13). The problem investigated here

is a relatively complex flow type with significant color varia-

tions (see Fig. 6). DELFI’s reconstruction performance and its

simplicity in the implementation are promising for the further

application of the model in various fluid flow problems.

Furthermore, DELFI has also been investigated here for its

ability to reconstruct images with noise (Gaussian and uni-

form noise). Although there are studies for reconstructing LR

images to HR, only a few refer to noise removal in fluid dy-

namics. For example, in Callaham, Maeda, and Brunton 19 ,

several flow systems with various noise levels were studied,

and it was found that a sparse representation method recovers

the HR images better than least squares regression, in which

over-fitting occurred. In an unsupervised ML, the degrada-

tion and super-resolution attention architecture (D-SRA) fa-

cilitated the restoration of noisy flow fields occurring in high-

speed imaging.85 Physics-informed learning also has an ac-
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FIG. 10. Flow reconstruction result when the model is trained and validated with images with uniform noise, l = 0.1− 0.5. (a) The ground

truth regions of HR resolution are used for reference, and the respective (b) UNR-0.1, (c) UNR-0.1 reconstructed, (d) UNR-0.3, (e) UNR-0.3

reconstructed, (f) UNR-0.5, (g) UNR-0.5 reconstructed.

tive role in noisy image reconstruction. A physics-constrained

Bayesian neural network (PC-BNN) can reconstruct the flow

field when data are corrupted with measurement noise of var-

ious levels86. The CNN super-resolution (CNN-SR) architec-

ture87 provided accurate results when dealing with LR inputs

with Gaussian noise, non-Gaussian noise, or downsampled

measurements.

IV. CONCLUSIONS

The process of training complex networks with deep learn-

ing layers has been adopted in this paper. Two-dimensional

data of a bifurcating turbulent flow in a suddenly expanded

channel have been employed as the test case since its inherent

complexity fits well on convolutional neural network opera-

tions.

To establish a model training and testing database, the

original simulation-extracted, high-resolution images are pre-

processed to give low-resolution images with uniform and

Gaussian noise. This approach aims to suggest a computa-

tional model that can deal with cases that resemble actual fluid

experiments, where pixelated and noisy datasets are acquired

and efficient post-processing and prediction tasks are the open

questions. The proposed architecture, DELFI, is based on a

lightweight, residual-layer construction that is easy to train

and adjust to similar fluid dynamics problems. For the spe-

cific expanding channel turbulent dataset, reconstruction met-

rics, in terms of the peak signal-to-noise ratio, have reached

PSNR = 44.75 for low-resolution images. The absolute error

between a high resolution and a reconstructed image is kept

below 15%, even when the input image is highly pixelated.

The proposed architecture has achieved PSNR = 42.76 for

images with added uniform noise. Although noise is an in-

dispensable component of all measurement systems, it has

not been widely investigated in the super-resolution literature.

DELFI has given small errors during noise reduction, below

10% for uniform noise levels l < 0.3 and less than 15% for

higher levels. These errors appear only in small regions inside

the flow field where velocity values present abrupt changes.

Higher error values have been obtained during Gaussian noise

removal, where errors appear in more regions inside the con-

tracted channel, especially for noise distribution with a stan-

dard deviation equal to 0.1. However, these values do not

exceed 15% for all cases investigated.

Considering most of the reported literature results in super-

resolution reconstruction during the past years, the trend of

employing generative artificial intelligence in most branches

of science and technology is also driving the super-resolution

platforms for fluid dynamics applications, with generative ad-

versarial networks constantly evolving. This is an undoubt-

edly accurate choice with a high perspective for future im-

plementations. Nonetheless, simpler architectures still have

much to offer. Mainly from U-Net basis, these architec-
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FIG. 11. Error heat maps, denoting the difference between an ex-

ample HR image and reconstructed images, resulting from a noisy

input with Gaussian noise of mean µ = 0.0 and standard deviation:

(a) σ = 0.025, (b) σ = 0.05, (c) σ = 0.075, and (d) σ = 0.1.

tures are practical, run fast, can be easily employed by non-

specialists in deep programming techniques, and achieve ac-

curate results in common turbulence phenomena studied.

By comparing DELFI with some well-established super-

resolution architectures from the literature, it was found that

DELFI achieves higher PSNR values for most cases. For

example, DELFI’s PSNR is about 50% higher than the sim-

ple SRCNN and 17% higher than the more complex ESR-

GAN. On the contrary, the MPSRC architecture reaches a

12% higher PSNR than DELFI. However, all these values are

reported for different datasets, but they are representative of

the model’s performance in a complex fluid flow application.

The present study also stimulates future research. Specif-

ically, it is worth investigating the model’s transferability

across cases with limited or unavailable training data and

combining experimental and numerical data for training the

model. These areas require further research to broaden the

application of DELFI and other SR architectures.
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